SYNTHESIS, CHARACTERIZATION AND ANTI BACTERIAL AND CYTOTOXIC STUDIES OF NOVEL 1,5 BENZOTHIAZEPINES FROM CHALCONES OF 1-(2,4-DIFLUOROPHENYL) ETHANONE PRECURSOR

CH. M. M. Prasada Rao*, 1, S. A. Rahaman1, Rajendra Prasad Yejella2

1*Research scholar, Department of Pharmaceutical Sciences, JNTUK, Kakinada, Andhra Pradesh, India.
1Department of Pharmaceutical Chemistry, QIS College of Pharmacy, Ongole, Andhra Pradesh, India.
2Department of Pharmaceutical Chemistry, Nirmala College of Pharmacy, Mangalagiri, Andhra Pradesh, India.
2Department of Pharmaceutical Chemistry, University College of Pharmaceutical sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India.

ABSTRACT

1, 5 benzothaizepines heterocyclic ring system having the diverse pharmacological activities. The present work focus on synthesis of novel benzothiazepines molecules by condensation of 1-(2', 4'-difluorophenyl)-3-(4"-methylphenyl)-2-propen-1-one derivatives and O-amino thiophenol in the presence piperidine and glacial acetic acid. The structures of compounds were confirmed by spectral analysis using IR, 1HNMR and Mass analysis. The biological evolution of compounds was performed for anti-microbial activity by using serial dilution method and cytotoxicity studies by MTT assay method.

KEYWORDS

Chalcones, Antimicrobial Activity, Antifungal activity and Cytotoxicity.

INTRODUCTION

The benzothiazepines1-6 (1 and 2) are important nitrogen and sulfur-containing seven-membered heterocyclic compounds in drug research since they possess diverse bioactivities7-14. 1, 5-Benzothiazepines are the most well-known representatives of benzologs of 1,4-thiazepine (3) and one of the three possible benzo-condensed derivatives, viz. 1,4-(4), 4,1- (5) and 1, 5-benzothiazepines15-18. The 1, 5-benzothiazepine derivatives are of particular interest for lead discovery because they...
have been found active against different families of targets. The first molecule of 1, 5-benzothiazepine used clinically was diltiazem (6), followed by clentiazem (7), for their cardiovascular action. Some of the 1, 5-benzothiazepine derivatives were also used clinically for CNS disorders (8), clothiapine (9) and quetiapine (10). Therefore, the 1, 5-benzothiazepines are useful compounds in the drug research which has stimulated the invention of a wide range of synthetic methods for their preparation and chemical transformations.

The importance of the 1, 5-benzothiazepine nucleus has been well established as illustrated by a large number of compounds which have been patented as chemotherapeutic agents. A number of biological activities have been associated with it, such as antifeedant, coronary vasodilatory, tranquilizer, antidepressant, CNS stimulant, antihypertensive, calcium channel blocker, antiulcer, calcium antagonist, antimicrobial and anticonvulsant agents. 1, 5-Benzothiazepines molecules have been found to be useful in mucosal blood flow, as antiulcer and gastric secretion inhibitor. Recently, anticancer activities, hemodynamic effects, and spasmylic activities have also been reported.

Keeping this broad spectrum of biological activities in mind, in the present investigation it has been considered worthwhile to synthesize benzothiazepines from chalcones derivatives. The compounds were characterized by H NMR and IR analysis. The compounds were tested for their antimicrobial activity by standard protocols.

EXPERIMENTAL WORK

Scheme of Synthesis

Synthesis of benzothiazepines from chalcones obtained from 2, 4-difluoroacetophenone (Scheme-12)

General procedure for the synthesis of benzothiazepines

To a solution of chalcone derivative in dry acidic methanol acidified by adding few drops of glacial acetic acid to it, 2-aminothiophenol was added. The mixture was then refluxed until a crystalline solid separates out. After cooling, the solid product was collected and washed with diethyl ether and cold methanol. The crude solid was recrystallized from ethanol.

Spectral data for synthesised 1, 5 benzothiazepines:

1. **B1-B10**

2. **2, 3-Dihydro-2-(3-nitro-4-methylphenyl)-4-(2, 4-difluorophenyl)-1, 5-benzothiazepine (BP1)**

IR (KBr) (cm⁻¹) : 1642 (C=N), 1548 (N=O, asymmetric), 1510 (C=C), 1380 (C-N), 1338 (N=O, symmetric), 927 (C-F) and 668 (C-S). H-NMR (CDCl₃) ppm : 4.16 (dd, J₂,₃a = 5.1 Hz, J₂,₂b = 12 Hz, 1H, C₂-H), 3.23 (dd, J₃a,₂b = 14.4 Hz, J₃a,₂ = 9.9 Hz, 1H, C₃-H-3a), 2.53 (t, J₃b,₃a = J₃b,₂ = 12.9 Hz, 1H, C₃-H-3b), 2.50 (3H, s, Ar-CH₃), 7.30 (1H, s, Ar-H), 6.70 (3H, m, Ar-H), 7.45-8.78 (6, Ar-H).

3. **2, 3-Dihydro-2-(3, 4, 5-trimethoxyphenyl)-4-(2, 4-difluorophenyl)-1, 5-benzothiazepine (BP12)**

IR (KBr) (cm⁻¹) : 1648 (C=N), 1505 (C=C), 1365 (C-N), 1225 (O-CH₃), 932 (C-F) and 678 (C-S). H-NMR (CDCl₃) ppm : 3.06 (dd, J₂,₃a = 5.3 Hz, J₂,₂b = 12 Hz, 1H, C₂-H), 2.83 (dd, J₃a,₂b = 14.4 Hz, J₃a,₂ = 9.9 Hz, 1H, C₃-H-3a), 2.0 (t, J₃b,₃a = J₃b,₂ = 12.9 Hz, 1H, C₃-H-3b), 7.22 (1H, s, Ar-H), 6.60 (3H, m, Ar-H), 7.30-7.50 (5H, Ar-H), 3.70 (3H, s, Ar-OCH₃), 3.88 (6H, s, 2Ar-OCH₃).

4. **2, 3-Dihydro-2-(3, 4-methylenedioxyphenyl)-4-(2, 4-difluorophenyl)-1, 5-benzothiazepine (BP13)**

IR (KBr) (cm⁻¹) : 1592 (C=N), 1502 (C=C), 1370 (C-N), 1232 (O-CH₂-O-), 921 (C-F) and 689 (C-S). H-NMR (CDCl₃) ppm : 4.94 (dd, J₂,₃a = 5.1 Hz, J₂,₂b = 12 Hz, 1H, C₂-H), 3.25 (dd, J₃a,₂b = 14.4 Hz, J₃a,₂ = 9.9 Hz, 1H, C₃-H-3a), 3.14 (t, J₃b,₃a = J₃b,₂ = 12.9 Hz, 1H, C₃-H-3b), 7.25 (1H, s, Ar-H), 7.40 (3H, m, Ar-H), 6.10 (2H, s, O-CH₂-O), 7.21-7.85 (6H, Ar-H).

5. **2, 3-Dihydro-2-(3, 4-methylenedioxyphenyl)-4-(2, 4-difluorophenyl)-1, 5-benzothiazepine (BP14)**

IR (KBr) (cm⁻¹) : 1602 (C=N), 1505 (C=C), 1340 (C-N), 664 (C-S), 933 (C-F) and 790 (C-Br). H-NMR (CDCl₃) ppm : 5.07 (dd, J₂,₃a = 5.3 Hz, J₂,₂b = 12 Hz, 1H, C₂-H), 4.10 (dd, J₃a,₂b = 14.4 Hz, J₃a,₂ = 9.2 Hz, 1H, C₃-H-3a), 3.39 (t, J₃b,₃a = J₃b,₂ = 12.9 Hz, 1H, C₃-H-3b), 7.10 (1H, s, Ar-H), 6.80 (3H, m, Ar-H), 6.80-7.30 (5H, Ar-H).

Available online: www.uptodateresearchpublication.com
2, 3-Dihydro-2-(4-dimethylaminophenyl)-4-(2, 4-difluorophenyl)-1, 5-benzothiazepine (BP15)
IR (KBr) (cm$^{-1}$) : 1608 (C=N), 1509 (C=C), 1390 (C-N), 1175 (-N(CH$_3$)$_2$), 933 (C-F) and 679 (C-S);
1H-NMR (CDCl$_3$) ppm : 4.68 (dd, J$_{3a,3b}$ = 5.3 Hz, J$_{2,3a}$ = 12 Hz, 1H, C$_2$-H), 7.20 (1H, s, Ar-H), 7.30 (3H, m, Ar-H), 6.85 (3H, m, Ar-H), 6.95 (1H, s, Ar-OH), 3.83 (dd, J$_{3a,2}$ = 9.9 Hz, 1H, C$_3$-H-3a), 1.03 (t, J$_{3b,3a}$ = 12.9 Hz, 1H, C$_3$-H-3b), 7.20 (1H, s, Ar-H), 7.15-7.90 (6H, Ar-H), 6.95 (1H, s, Ar-CH$_3$).

BIOLOGICAL EVOLUTION

Antimicrobial Activity

Since the chalcones were reported to possess antimicrobial activity, the chalcones prepared during the present work were tested for antibacterial and antifungal activity.

Antibacterial activity

The antibacterial activity was tested by determining the minimum inhibitory concentration (MIC) for each compound using serial tube dilution technique. The following test organisms were used.

Gram positive bacteria

Staphylococcus aureus, Bacillus subtilis.

Gram negative bacteria

Escherichia coli, Proteus vulgaris.

Antifungal activity

The antifungal activity was tested by the same procedure as described in the antibacterial activity, except using Potato-Dextrose-Agar medium. These two organisms were used. Aspergillus niger, Candida tropicalis.

The results are shown in tables 2 in the case of antibacterial activity and table 3 in the case of antifungal activity.

RESULTS AND DISCUSSION

Antibacterial activity

From the above results it is evident that all the synthesized Benzothiazepines, showed antibacterial activity with different MIC values against the tested organisms, but not comparable with that of the standard. Among the compounds tested, BP1, BP3 and BP4 3"-nitro-4"methylphenyl, 3",4"-methylene dioxyphenyl and 5"-bromofuran-2"-ylmoiety was found to be the most potent against B. subtilis, E. coli and P. vulgaris having a MIC value 6.60-7.80 (6H, Ar-H)
of 64 µg/mL in each case. The chalcones, BP16, BP17 shows MIC value of 128 µg/mL against B. subtilis and E. coli respectively. Some of the chalcones) showed a MIC of 256 µg/mL against both Gram-positive and Gram-negative bacteria. But most of them showed a MIC value in between 128-256 µg/mL.

Antifungal activity

Among the compounds tested for antifungal activity, compounds BP1, BP3, BP4to be the most potent with a MIC value of 16 µg/mL against A. Niger in the case of against C. tropicalis compounds BP1, BP3, BP4 shows MIC of 32 µg/mL. The compounds with electron releasing groups show moderately the activity.

CYTOTOXICITY STUDIES

The *in vitro* cytotoxicity of the test compounds (BP1-BP10) were performed based on MTT assay method on HT-29 (colon cancer), MCF-7 (breast cancer) and DU-145 (prostate cancer) cell lines. The cell lines were obtained from National Centre for Cell Science (NCCS), Pune, India. Methotrexate was used as reference drug for comparison. Assay was performed in triplicate for three independent determinations. The cytotoxicity was expressed as IC$_{50}$ (µg/mL) which is the concentration of the compound that inhibited proliferation rate of the tumour cells by 50% as compared to the control untreated cells. IC$_{50}$ values were determined from the plot: % inhibition versus concentration.

\[
\text{% inhibition at the given concentration} = \frac{1-\text{(Absorbance average)}}{\text{(Control absorbance average)}} \times 100
\]

\[
\text{IC}_{50} = \text{Inv. Log (50-c) / m; c and m derived from y=mx+c of plot of % inhibition Vs log C. The results were tabulated.}
\]

The prepared benzothiazepines have been evaluated for their cytotoxicity against HT-29 (colon cancer), MCF-7 (breast cancer) and DU-145 (prostate cancer) cell lines. Methotrexate was used as the reference standard. The results clearly revealed that most of the compounds possessed cytotoxic activity as evidenced by the IC 50 values. Of all the compounds tested against HT-29 cell lines, the compounds BP1 having 3"-nitro-4"methylphenyl moiety shows IC$_{50}$ value at 36 µg/mL, BP6 with 3"-methoxy-4"-hydroxyphenyl moiety shows IC$_{50}$ value at 64µg/mL. Among the compounds tested for cytotoxicity on MCF-7 cell lines, the compounds BP1 having 3"-nitro-4"methylphenyl moiety shows IC$_{50}$ value at 28 µg/mL, BP6 with 3"-methoxy-4"-hydroxyphenyl moiety shows IC$_{50}$ value at 67 µg/mL. Among the compounds tested for cytotoxicity on DU-145 cell lines, the compounds BP1 having 3"-nitro-4"methylphenyl moiety shows IC$_{50}$ value at 16 µg/mL, BP6 with 3"-methoxy-4"-hydroxyphenyl moiety shows IC$_{50}$ value at 62 µg/mL. The other compounds also showed activity but at a higher IC$_{50}$ values.
Table No.1: Physical characterization data of benzothiazepines (BP₁-BP₆)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Compound</th>
<th>R</th>
<th>Molecular Formula</th>
<th>Relative Molecular Mass (RMM)</th>
<th>Melting Point (°C)</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BP<sub>1</sub></td>
<td></td>
<td>C<sub>22</sub>H<sub>16</sub>F<sub>2</sub>N<sub>2</sub>O<sub>2</sub>S</td>
<td>410</td>
<td>176-179</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>BP<sub>2</sub></td>
<td></td>
<td>C<sub>24</sub>H<sub>21</sub>F<sub>2</sub>NO<sub>3</sub>S</td>
<td>441</td>
<td>148-151</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>BP<sub>3</sub></td>
<td></td>
<td>C<sub>22</sub>H<sub>15</sub>F<sub>2</sub>NO<sub>2</sub>S</td>
<td>395</td>
<td>156-157</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>BP<sub>4</sub></td>
<td></td>
<td>C<sub>19</sub>H<sub>17</sub>BrF<sub>2</sub>NOS</td>
<td>420</td>
<td>132-135</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>BP<sub>5</sub></td>
<td></td>
<td>C<sub>23</sub>H<sub>20</sub>F<sub>2</sub>N<sub>2</sub>S</td>
<td>394</td>
<td>114-117</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>BP<sub>6</sub></td>
<td></td>
<td>C<sub>22</sub>H<sub>17</sub>F<sub>2</sub>NO<sub>2</sub>S</td>
<td>397</td>
<td>151-154</td>
<td>86</td>
</tr>
<tr>
<td>7</td>
<td>BP<sub>7</sub></td>
<td></td>
<td>C<sub>20</sub>H<sub>14</sub>F<sub>2</sub>N<sub>2</sub>S</td>
<td>352</td>
<td>111-114</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>BP<sub>8</sub></td>
<td></td>
<td>C<sub>20</sub>H<sub>14</sub>F<sub>2</sub>N<sub>2</sub>S</td>
<td>352</td>
<td>120-121</td>
<td>82</td>
</tr>
<tr>
<td>9</td>
<td>BP<sub>9</sub></td>
<td></td>
<td>C<sub>20</sub>H<sub>14</sub>F<sub>2</sub>N<sub>2</sub>S</td>
<td>352</td>
<td>110-101</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>BP<sub>10</sub></td>
<td></td>
<td>C<sub>19</sub>H<sub>13</sub>F<sub>2</sub>N<sub>2</sub>S</td>
<td>357</td>
<td>146-149</td>
<td>86</td>
</tr>
</tbody>
</table>
Table No.2: Antibacterial activity of synthesised compounds (BP₁ to BP₁₀)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Compound</th>
<th>R</th>
<th>B. subtilis</th>
<th>S. aureus</th>
<th>E. coli</th>
<th>P. vulgaris</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B₁</td>
<td>3"-nitro-4"-methylphenyl</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>B₂</td>
<td>3",4",5"-trimethoxyphenyl</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>B₃</td>
<td>3",4"-methylendioxyphenyl</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>B₄</td>
<td>5"-bromofuran-2"-yl</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>B₅</td>
<td>4"-dimethylaminophenyl</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>6</td>
<td>B₆</td>
<td>3"-methoxy-4"-hydroxyphenyl</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>7</td>
<td>B₇</td>
<td>2"-pyridinyl</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>B₈</td>
<td>3"-pyridinyl</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>B₉</td>
<td>4"-pyridinyl</td>
<td>256</td>
<td>512</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>10</td>
<td>B₁₀</td>
<td>2"-thienyl</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>11</td>
<td>Standard</td>
<td>Ampicillin</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

(Expressed as MIC in µg/mL)

Table No.3: Antifungal activity of synthesised compounds (BP₁ to BP₁₀)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Compound</th>
<th>R</th>
<th>Aspergillus niger</th>
<th>Candida tropicalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B₁</td>
<td>3"-nitro-4"-methylphenyl</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>B₂</td>
<td>3",4",5"-trimethoxyphenyl</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>3</td>
<td>B₃</td>
<td>3",4"-methylendioxyphenyl</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>B₄</td>
<td>5"-bromofuran-2"-yl</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>B₅</td>
<td>4"-dimethylaminophenyl</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>B₆</td>
<td>3"-methoxy-4"-hydroxyphenyl</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>B₇</td>
<td>2"-pyridinyl</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>B₈</td>
<td>3"-pyridinyl</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>9</td>
<td>B₉</td>
<td>4"-pyridinyl</td>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>10</td>
<td>B₁₀</td>
<td>2"-thienyl</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>11</td>
<td>Standard</td>
<td>Fluconazole</td>
<td><2</td>
<td><2</td>
</tr>
</tbody>
</table>

(Expressed as MIC in µg/mL)
Table No.4: Cytotoxicity of the new chalcones (BP1 to BP10)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Compound</th>
<th>R</th>
<th>Cell line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HT-29</td>
</tr>
<tr>
<td>1</td>
<td>B1</td>
<td>3"-nitro-4"-methylphenyl</td>
<td>36 ± 2</td>
</tr>
<tr>
<td>2</td>
<td>B2</td>
<td>3",4",5"-trimethoxyphenyl</td>
<td>148 ± 2</td>
</tr>
<tr>
<td>3</td>
<td>B3</td>
<td>3",4"-methylenedioxyphenyl</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>B4</td>
<td>5"-bromofuran-2"-yl</td>
<td>123 ± 2</td>
</tr>
<tr>
<td>5</td>
<td>B5</td>
<td>4"-dimethylaminophenyl</td>
<td>155 ± 1</td>
</tr>
<tr>
<td>6</td>
<td>B6</td>
<td>3"-methoxy-4"-hydroxyphenyl</td>
<td>NA</td>
</tr>
<tr>
<td>7</td>
<td>B7</td>
<td>2"-pyridinyl</td>
<td>64 ± 2</td>
</tr>
<tr>
<td>8</td>
<td>B8</td>
<td>3"-pyridinyl</td>
<td>195 ± 2</td>
</tr>
<tr>
<td>9</td>
<td>B9</td>
<td>4"-pyridinyl</td>
<td>115 ± 2</td>
</tr>
<tr>
<td>10</td>
<td>B10</td>
<td>2"-thienyl</td>
<td>132 ± 2</td>
</tr>
<tr>
<td>11</td>
<td>Methotrexate</td>
<td></td>
<td>11 ± 1</td>
</tr>
</tbody>
</table>

Data presented as mean ± SD (n=3). All the compounds and the standard dissolved in DMSO, diluted with culture medium containing 0.1% DMSO. The control cells were treated with culture medium containing 0.1% DMSO.

NA- No Activity (i.e IC₅₀ > 200 μg/mL)
Chemical Reaction

CHalcone derivative + 2-Aminothiophenol → Benzothiazepine derivative

Available online: www.uptodateresearchpublication.com October - December 182
CONCLUSION
In all synthesized benzothiazepines B_1, B_3 shows potent anti-bacterial activity, B_1, B_3 shows potent anti-fungal activity, BP_1, BP_6, BP_8 shows potent activity against HT-29 (colon cancer), MCF-7 (breast cancer) DU-145 (prostate cancer) cell lines.

ACKNOWLEDGEMENT
The author thankful to the Guide and Co-Guide for their esteemed guidance in completion of research work.

CONFLICT OF INTEREST
We declare that we have no conflict of interest.

BIBLIOGRAPHY
27. Kumar A, Ahmad I, Sudershian Rao M. A simple and efficient thia-Michael addition to α, β-unsaturated ketones catalyzed by Yb(OTf)₃ in [bmim] [BF₄], *J Sulfur Chem*, 30(6), 2009, 570-578.
32. Khatik G L, Kumar R, Chakraborti A K. Transfer function synthesis using frequency

41. Rainsford, Kim D. Progress in drug research. A product of Springer Basel ISSN: 0071-786X.

Available online: www.uptodateresearchpublication.com

